
Fernando Benedito Veras Magalhães

Distributed CEP for Context-Aware Adaptive
Acquirement and Processing of Information

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor: Prof. Markus Endler

Rio de Janeiro
April 2021

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Fernando Benedito Veras Magalhães

Distributed CEP for Context-Aware Adaptive
Acquirement and Processing of Information

Dissertation presented to the Programa de Pós–graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Markus Endler
Advisor

Departamento de Informática – PUC-Rio

Prof. Noemi de La Rocque Rodriguez
Departamento de Informática – PUC-Rio

Prof. Francisco José da Silva e Silva
Departamento de Informática – UFMA

Rio de Janeiro, April 14th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



All rights reserved.

Fernando Benedito Veras Magalhães

Bachelor’s degree in Computer Science at Federal University
of Maranhão (UFMA) in 2018.

Bibliographic data
Magalhães, Fernando Benedito Veras

Distributed CEP for Context-Aware Adaptive Acquire-
ment and Processing of Information / Fernando Benedito
Veras Magalhães; advisor: Markus Endler. – Rio de janeiro:
PUC-Rio, Departamento de Informática, 2021.

v., 61 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Internet das Coisas. 2. Ciência de Contexto. 3. Proces-
samento de Eventos Complexos. 4. Processamento de Fluxos
Distribuído. I. Endler, Markus. II. Pontifícia Universidade Ca-
tólica do Rio de Janeiro. Departamento de Informática. III.
Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Acknowledgments

To God for everything. To my Advisor, Markus Endler, for guidance in this
journey and for his patience. To my family and friends for their support.
To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
for partially financing this research. This study was financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Abstract

Magalhães, Fernando Benedito Veras; Endler, Markus (Advisor). Dis-
tributed CEP for Context-Aware Adaptive Acquirement and
Processing of Information. Rio de Janeiro, 2021. 61p. Dissertação
de mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

The current dissemination of IoT increases the deployment of stream
processing solutions for monitoring and controlling elements of the real
world. One of those solutions is Complex Event Processing (CEP). Initi-
ally, a single computer/cluster would concentrate all the CEP execution.
However, a centralized execution of CEP is not suitable for coping with the
high volume, velocity, and volatility of IoT sensors’ data streams. Instead,
applications using CEP should deploy a distributed CEP Event Processing
Network, preferably having CEP agents both in the cloud and at edge de-
vices. Also, deciding the arrangement used to split the processing among
these tiers and their devices can be just as important. That said, being
aware of each of the devices’ current context, for instance, their location
and available sensors, can help to collect and (partially) process the data
on devices close to the data’s production site. This work presents a context-
aware distributed CEP platform called Global CEP Manager (GCM). GCM
is a service of the ContextNet middleware that supports the context-based
deployment, and dynamic rearrangement of CEP queries to CEP engines
executing in the cloud, stationary edge devices, and M-Hubs, which are
ContextNet’s mobile edge devices. GCM uses the ContextMatcher, which is
also part of this work. ContextMatcher is a module for ContextNet applica-
tions that enables the delivery of messages for nodes that match a specified
set of contextual requirements.

Keywords
IoT; Context-awareness; Complex Event Processing; Distributed

Stream Processing.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Resumo

Magalhães, Fernando Benedito Veras; Endler, Markus. CEP Distri-
buído para Aquisição e Processamento de Informação Adap-
tativos Cientes de Contexto. Rio de Janeiro, 2021. 61p. Disserta-
ção de Mestrado – Departamento de Informática, Pontifícia Universi-
dade Católica do Rio de Janeiro.

A disseminação atual da IoT aumenta a implantação de soluções de
processamento de fluxo de dados para monitorar e controlar elementos do
mundo real. Uma dessas soluções é o Processamento de Eventos Complexos
(CEP). Inicialmente, um único computador ou cluster concentraria toda
a execução do CEP. No entanto, a execução centralizada do CEP não é
ideal para lidar com o alto volume, velocidade e volatilidade dos fluxos
de dados dos sensores IoT. Em vez disso, as aplicações CEP devem criar e
decentralizar o processamento de eventos CEP, de preferência tendo agentes
CEP na nuvem e em dispositivos na borda. Além disso, tão importante
quanto a descentralização, é decidir como o processamento será dividido
entre esses dispositivos. Dito isso, estar ciente do contexto atual de cada
dispositivo, por exemplo, sua localização e sensores disponíveis, pode ajudar
a coletar e (parcialmente) processar os dados em dispositivos próximos
ao local onde os dados foram produzidos. Este trabalho apresenta uma
plataforma de CEP distribuído com ciência de contexto chamada Global
CEP Manager (GCM). GCM é um serviço do middleware ContextNet
que oferece suporte à implantação e ao rearranjo dinâmico de consultas
CEP baseados em contexto para motores CEP em execução na nuvem,
em dispositivos na borda estacionários e M-Hubs, que são dispositivos na
borda móveis do ContextNet. O GCM usa o ContextMatcher, que também
faz parte deste trabalho. ContextMatcher é um módulo para aplicações
ContextNet que permite a entrega de mensagens para nós cujo contexto
esteja de compatível com um determinado conjunto de características
contextuais.

Palavras-chave
Internet das Coisas; Ciência de Contexto; Processamento de Eventos

Complexos; Processamento de Fluxos Distribuído.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Table of contents

1 Introduction 12
1.1 Problem statement 14
1.2 Objectives 15
1.2.1 General Objective 15
1.2.2 Specific Objectives 15
1.3 Items out of Scope 16
1.4 Allocation and Assignment Operations 17
1.5 Outline 17

2 Background 18
2.1 CEP and Event Processing Networks 18
2.2 ContextNet and M-Hub 20

3 Related Work 21
3.1 Query distribution strategy 21
3.2 Multi-tiered distributed CEP 23
3.3 Context-aware message distribution 24
3.4 This Work 24

4 Proposed Approach 25
4.1 General Architecture 26
4.2 Query Deployment Sequence 27
4.3 Context-based Message Distribution Layer 28
4.4 The core component 29
4.5 The Processing Component 30

5 Implementation 32
5.1 ContextMatcher 32
5.1.1 Target Contexts 32
5.1.2 ContextMatcher Client Nodes 33
5.1.3 ContextMacher Messages 33
5.1.3.1 Multicast and Unicast 33
5.1.3.2 Retained Messages (OnMatch / OnUnmatch) 34
5.1.3.3 Message Priority 35
5.1.4 ContextMatcher Server Module 35
5.1.5 Justificaton for Stored Procedures 37
5.2 Global CEP Manager 38
5.2.1 GCM Core 39
5.2.2 Processing Agent (PA) 41
5.2.3 Offline PA Behavior 41

6 Validation of Continuous Queries 43
6.1 Basic Concepts and Notations 43
6.2 The invariants about system consistency 44

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



6.2.1 When a new query is submitted 44
6.2.2 When a new version of a query is submitted 44
6.2.3 When a query is directly assigned to a Processing Agent 45
6.2.4 When a query is assigned to a context 45
6.2.5 When a GCM Processing Agent reconnects to the GCM Core 45

7 Evaluation 47
7.1 Case Study 47
7.2 Real Test Setup 50
7.3 Global CEP Manager Performance Tests 51
7.4 ContextMatcher Performance Tests 53
7.4.1 Matching Tests 53
7.4.2 Reallocaction Tests 54

8 Conclusions 56
8.1 Publications 56
8.2 Contributions 57
8.3 Future Works 57

Bibliography 59

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



List of figures

Figure 2.1 Data-stream analysis using CEP 19
Figure 2.2 A distributed Event Processing Network 20

Figure 4.1 The general architecture of the proposed model. 27
Figure 4.2 Query deployment sequence. 28
Figure 4.3 A general view of the Context-based Message Distribu-

tion Layer. 28
Figure 4.4 The Core Component. 29
Figure 4.5 The processing component. 31

Figure 5.1 The ContextMatcher Server Module. 37
Figure 5.2 The Global CEP Manager Core. 40
Figure 5.3 The Global CEP Manager Processing Agent. 41

Figure 7.1 Use Case 48
Figure 7.2 Global CEP Manager CPU Usage 52
Figure 7.3 Tests with a locally hosted Client Node. 54
Figure 7.4 Tests with the Client Node running in the Raspberry. 55

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



List of tables

Table 7.1 List of devices. 51
Table 7.2 EvtOfAvgTemp produced per second in each test. 52
Table 7.3 Delay until the query is relocated. 55

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



List of abreviations

AC – Air Conditioner
API – Application Programming Interface
CEP – Complex Event Processing
CQ – Continuous Query
DB – Database
DDS – Data Distribution Service
EPA – Event Processing Agent
EPL – Event Processing Language
EPN – Event Processing Network
GCM – Global CEP Manager
GPIO – General-purpose input/output
IoMT – Internet of Mobile Things
IoT – Internet of Things
MQTT – Message Queuing Telemetry Transport
OS – Operating System
PA – Processing Agent
REST – Representational State Transfer
WPAN – Wireless Personal Area Network
SoC – System on a Chip

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



1
Introduction

The increasing demand to get relevant information about real-world pro-
cesses, entities, and interactions faster, along with the ever-growing generation
of data, drives the demand for computer systems capable of processing high
volume data flows as fast as possible. These systems constitute what (1) clas-
sify as Information Flow Processing (IFP), or else, stream processing systems.

The authors of (2) highlight two essential characteristics of stream
processing: the analysis of data immediately on its receipt and the ability to
take into account the temporal attribute of the data/events. It is possible
to define the first characteristic as focusing on immediate or low latency
responses instead of the traditional method of storing all the data for future
analysis. In contrast, the second means that instead of processing the entire,
eventually stale, set of received events, the stream processing model will
focus on analyzing and detecting specific patterns of events in time-bounded
sliding/batch windows, disregarding the old data (i.e., the data outside of the
current window).

As a manner to declare how the data streams should be processed,
stream processing technologies commonly offer continuous queries. Continuous
or standing queries are business logic rules that define how data should be
processed and outputted. They offer a series of operators to process the data
and detect when a specific situation occurs. Usually, it is possible to categorize
these operators as filters, aggregation, or patterns. Filters select only data
entries that have an attribute within a specific interval. Aggregation combines
multiple streams. Finally, patterns define a sequence of entries with particular
characteristics.

In the initial approaches to stream processing, many stream processing
systems would concentrate all data stream processing at a centralized site,
such as a central server, a cluster, or a cloud. Such configuration has some ad-
vantages; we may cite: simpler maintenance, easier enforcing of standards and
security, and less data redundancy. However, many modern stream processing
solutions started to adopt a distributed approach, even pushing some of the
processing to the edge (3), closer to where the raw data (e.g., sensor data) is
acquired.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 1. Introduction 13

This distributed approach has several benefits. For instance, it can
reduce processing bottlenecks since it is not concentrated at the cluster/cloud,
but pushes some of the processing to the edge (3). That approach means
that a fair amount of data processing can be done locally, at the edge,
reducing the latency to generate results and possibly the latency to react to
undesired/unexpected situations. For example, continuous queries that operate
on data only from sensors directly connected to an edge node and also drive
some local action, such as raising an alert can be fully processed locally.
Moreover, the distributed approach can also reduce the network bandwidth
usage since instead of forwarding all the raw data, edge nodes can send only
pre-processed (e.g filtered, aggregated or summarized) data. And since almost
all stream processing systems essentially analyze data that “flows from the
periphery to the center” (1), it is only natural to think of stream processing
systems that divide the global data processing logic between the nodes along
the path of the data flow (4).

Many flavors and approaches for stream processing have been proposed.
For instance: Active Databases (5), Data Stream Management System (DSMS)
(6), and ultimately Stream Reasoning (7) and Complex Event Processing
(CEP). CEP (8) has some properties that favor it among the other approaches.
One of them is the use of events to encapsulate data. Events are meaningful
pieces of data as they represent a fact or a status update (e.g., a departure, an
arrival, or a location update). Also, each event belongs to an event type, which
is characterized by a label (e.g., DepartureEvent) and a set of attributes (e.g.,
timestamp, train, station).

Furthermore, CEP has a distinct power to detect the occurrence of
patterns that may include multiple events from different event streams and
consider characteristics like the sequence in which the events occurred. It
means that CEP allows the declaration of (continuous) queries that identify
a complex pattern of event occurrences, such as three or more events of type
TemperatureOutOfBounds, followed by one or more SmokeDetected event, all
within a time window of one minute. Lastly, the defining advantage of CEP
is the possibility of producing complex events, which are events derived from
other, more basic, events and assembled/created by the CEP engine.

The CEP engine is the component that processes every event based
on the provided continuous queries. When one of those queries is activated,
for instance, upon the occurrence of those complex patterns, a complex
event may be generated. For example, the previous pattern could generate
a FireWarning event type holding the average temperature readings of the
original TemperatureOutOfBounds events. Those complex events will then

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 1. Introduction 14

constitute new event streams, meaning that other continuous queries can
further process them.

Distributed CEP implementations are often not only composed of cloud
nodes but also edge nodes. Those edge nodes can be distributed in the
monitored environment and may even be mobile. In those cases, the nodes can
differ in many aspects. In addition to location, they may differ, for instance, in
the availability or proximity of sensors, their processing power, and they may
be connected to a power grid or may run on a battery with a particular amount
of remaining charge. That means that each node will capture a particular set of
information from the environment and may have a certain amount of resources
that allow them to act as a remote CEP engine. Even two nodes equipped with
thermometers will provide data relevant to different applications if they are far
from each other. That means that being aware of the context of each node can
help the distributed CEP system provide richer and more precise information.

1.1
Problem statement

The process of designing and deploying distributed CEP solutions
presents some challenges. For instance, it is frequent to modify a CEP query
both before and after its deployment. Commonly, the developer may need to
adjust the event window or the event pattern to ensure that the query will
trigger in the desired situations. This characteristic justifies using an infras-
tructure where the user can state and deploy new queries or new versions of
a query at runtime. This infrastructure could also check if a query will func-
tion adequately (internally and in conjunction with the other queries) before
the query’s deployment. This check would enable the user to fix mistakes that
perhaps would only be detected at the trial phase.

Furthermore, to ensure the event type oriented coupling of the queries
dispersed in the system, it is essential to ensure that the processing nodes that
will consume the events a query outputs already know the event type of these
events. For instance, imagine that query A produces events that a subsequent
query B consumes where B and A are executed in different nodes. The node
that implements B should previously know the characteristics of the events
produced by A. Just as well, updates on queries and events should be checked
to make sure they stay compatible with previous queries that consume the
events.

Moreover, an essential step in distributed stream processing is the actual
partition of the processing load. In distributed CEP, that means allocating
or relocating queries to the nodes. The system may require the developer

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 1. Introduction 15

to choose himself/herself explicitly a node to run each query. However, a
distributed CEP system may also be adaptable, automatically allocating and
reallocating queries to CEP-enabled devices. For instance, the user may specify
a set of contextual requirements that a device needs to answer to execute
a query correctly. The system would be responsible for finding one (or all
the devices) that fill the requirements and then automatically allocate and
deploy the query. Those contextual requirements may include characteristics
like available sensors, battery level, processing power, and location of the CEP-
enable devices. The automatic reallocation can be especially useful on the
Internet Of Mobile Things (IoMT), where smart objects and edge gateways
can be mobile. That is for two main reasons: First, because mobile nodes are
more susceptible to disconnections, therefore the reassignment of queries from
a disconnected node to an available node is frequent; Second, because the
devices may change their contextual attributes, for instance by disconnecting
from sensors from one location and discovery new sensors when they move to
a new location and by the battery dropping below a certain threshold.

1.2
Objectives

1.2.1
General Objective

The general objective of this master thesis is to discuss and provide a
platform for distributed CEP applications that divide the stream processing
between heterogeneous nodes in different IoMT tiers. That includes the soft-
ware that enables the execution of CEP in those nodes and the distribution of
Continuous Queries and Events between those nodes.

1.2.2
Specific Objectives

– Support the submission of new versions of queries and automatically
distribute the new versions to every node executing the old version.

– Considering a set of continuous queries where some queries process the
output of previous queries, assist in the interoperability of continuous
queries. First, generating the event definition for the event types that
will be output by each rule, then disseminating these event types trans-
parently to the necessary nodes. Also, facilitate the connection of queries
running in different tiers by selectively distributing generated events and
event types.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 1. Introduction 16

– Assist in preserving the internal and mutual consistency of continuous
queries before their deployment by validating the query when it is
declared and when it is assigned to a node or a set of nodes.

– Investigate the use of the nodes’ context as a parameter to decide
how to allocate continuous queries. Given CEP queries with contextual
requirements (e.g., location, available sensors, processing power), enable
the automatic allocation and reallocation of this type of query to the
CEP-enabled nodes based on these requirements. Also, reallocating them
in case of disconnections.

– Evaluate the solution presented in this work by demonstrating a use case
scenario and performance tests.

1.3
Items out of Scope

Given that our general objective is to provide a platform for distributed
CEP applications, there are some aspects that, although relevant, we don’t
tackle in this master thesis:

– Distribute the service of query and event deployment. Our solution
includes a central node that manages the query deployment. We don’t
offer support for replication or redundancy of this node. Our solution
offers a level of reliability to disconnections since continuous queries can
be reallocated from disconnected nodes to available nodes. However, our
solution is not reliable to the disconnection of this central node.

– Replay of events lost in incomplete event windows due to a query
reallocation. After a query is reallocated, the new node will process only
the new events using the reallocated query. Old events that the query
would process process are lost. Our solution does not include the replay
of old events.

– Load balancing of queries. Our solution does not offer the meanings to
automatically allocate or reallocate queries to nodes with the objective
of balancing the processing load between nodes. The nodes chosen to
handle the queries that execute on a single node are picked randomly
among the available compatible nodes.

– Granting security of the data. Our solution does not use methods to
grant the security of the data in any data acquisition or processing stage.
To implement security we would recommend using a firewall and/or
controlling the access to the network.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 1. Introduction 17

1.4
Allocation and Assignment Operations

During the development of this work, we found two operations in the
query distribution that can cause ambiguity since it is possible to denominate
them using the same words. The first one is when the user/system adminis-
trator defines how to distribute the queries. That definition can be to send the
query to a specific node or to send to the nodes that fill a set of contextual
requirements. The second one is when the system picks the nodes that will
receive the queries based on these requirements. Although these are very dif-
ferent operations, terms such as assign, allocate, appoint and designate could
refer to both of them. To avoid this ambiguity, we define here the terms used
in this document:

– Assign: When the system administrator define how to distribute the
query.

– Unassign: When the system administrator undoes the assignment of
query, meaning that the query should not be deployed based on the
undone assignment.

– Allocate: When the system picks the devices that will receive the query
based on the assignment.

– Deallocate:When the system undoes the allocation of a query to a node
because of an unassignment, because the node disconnected or because
the node does not fill the set of contextual requirements anymore.

– Reallocate: The process of deallocating the query from one node and
allocating to another one.

1.5
Outline

The remaining of this master thesis is organized as follows: Chapter 2
presents the enabling concepts and technologies used in this work. Chapter 3
presents related works. Chapter 4 presents concepts of the approach adopted
to achieve this work’s objectives. Chapter 5 presents how this concepts were
implemented. Chapter 6 presents how this works validate continuous queries
and the assignment of continuous queries. Chapter 7 presents the evaluation
of this work. Finally, Chapter 8 concludes this master thesis.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



2
Background

This chapter presents the main theoretical and technology background
that enables our work. First, it further explains CEP and introduces Event
Processing Networks. Then it introduces the ContextNet middleware.

2.1
CEP and Event Processing Networks

Complex Event Processing (CEP) is a software technology for the dy-
namic analysis of large amounts of data or event flows in near real-time. It
specializes in detecting the occurrence of patterns within these flows. The coin-
ing of the term Complex Event Processing is attributed to David Luckham(9)
(8).

An event can represent the change of state of an analyzed entity or
the regular measurement of one or more properties of that entity (e.g., a
departure, an arrival, or a location update). An event can aggregate multiple
attributes. A computer status event, for example, can contain the level of
processor and main memory usage, temperature, and other attributes that
are relevant to the application that will consume that event. Every event
has an event type; Event types are to events what DB tables are to rows,
they define a name/label (e.g., DepartureEvent) and the event attributes
(e.g., station_id:int, bus_plate:string, timestamp:long). That said, what
differentiates CEP from the simple processing of event flows is the generation
of complex events that later constitute new event flows to be processed as well.
Therefore, complex event processing refers not to the complex processing of
events but to the processing of complex events where the higher the complexity
of the event, the higher the abstraction level of the initially acquired data it
represents.

CEP analyzes events based on CEP rules or queries, which are similar to
queries to a database. However, while in database systems queries are made to
information already stored, CEP uses continuous queries, that is, every new
event received is tested against queries instantiated before the arrival of the
event. Each continuous query uses one or more stream operators, such as filter,
aggregation, and pattern recognition. The output of a continuous query may

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 2. Background 19

constitute a complex event since it represents higher-level information (12).
Finally, as a visual aid to understanding CEP, Figure 2.1 contains a

diagram that depicts the stages of data stream analysis using complex event
processing. CEP can process data originated from multiple data sources.
The first stage of processing this data is to encapsulate it in simple events,
which are also named atomic events or raw events. Next, there is a software
module commonly named CEP engine that process the event streams. This
CEP engine knows the previously stated continuous queries. Continuous or
standing queries are the mechanism offered by CEP technologies to state how
the events should be analyzed. Every new event provided as input to the CEP
Engine is tested based on the previously stated continuous queries. The CEP
engine can also derive complex events by combining information from one or
more simple events, such as a FireEvent generated from TemperatureRaise
events followed by a SmokeDetected event. After generated, complex events
are fed back to the CEP engine to also be processed. At last, the result of event
processing can be automatic actuation or the production of information.

Data

Simple
Event

Data

Data

Simple
Event

CEP Engine

Complex
Events

AggregationFilters

Actuation

Information

Event 
Streams

Data Source 1

Data Source 2

Patterns

Continuous 
Queries

Figure 2.1: Data-stream analysis using CEP

The complex events produced by a continuous query can be consumed by
subsequent queries constituting a multi-level processing pipeline. A directed
graph called Event Processing Network (EPN) (10) is commonly used to
represent this pipeline. In this graph, each vertex is called an Event Processing
Agent (EPA), which is the processing stage of a query. Also, each directed edge
(x, y) on the EPN represents that the EPA y consumes the output of the EPA
x. Finally, representing a CEP processing pipeline as an EPN can facilitate
constructing a distributed CEP system since EPAs can be deployed on different
devices. That means the designing of a distributed EPN with continuous
queries interconnected, however executing in different devices. Figure 2.2, for
instance, can provide an overview of an EPN in an IoT scenario with devices
spread in different tiers. In this scenario, edge devices can execute filtering

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 2. Background 20

rules that require low processing power. In contrast, cloud devices execute
rules that aggregate the output of those filtering rules and rules that detect
the occurrence of complex patterns.

Distributed Event Processing Network

Filter Aggregation Sequence/
Pattern

Edge Cloud

Figure 2.2: A distributed Event Processing Network

2.2
ContextNet and M-Hub

The ContextNet (11) is a scalable middleware focused on supporting IoT
and IoMT environments. It offers two main protocols of communication SDDL
and MRUDP. SDDL is a protocol based on the Data Distribution System
(DDS) pattern for communication between cloud-based services. MRUPD is a
protocol for establishing a connection between gateways that also run SDDL
and client devices. The M-Hub is an Android application that acts as a mobile
edge gateway for the ContextNet. Two main services of the M-Hub were
relevant to our work. The first one was the S2PA; it can automatically discover
and connect to smart things with Bluetooth WPAN. S2PA enables the M-Hub
to collect sensor data automatically that will feed the input of our distributed
CEP solution. The second one is the MEPA service, which is a CEP service
that uses Asper1, an Android port of the Esper2 engine. We adapted the MEPA
service to ensure it implements the processing node we displayed on our model
and is compatible with our solution.

1Asper, Android port of Esper. https://github.com/mobile-event-processing/
Asper

2Esper CEP is an open-source CEP engine. http://www.espertech.com/esper/

https://github.com/mobile-event-processing/Asper
https://github.com/mobile-event-processing/Asper
http://www.espertech.com/esper/
DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



3
Related Work

Distributed CEP is already well established among information process-
ing technologies. For instance, (13) dates back to 2003 and presents a frame-
work for Distributed CEP implementation. However in this section we would
like to focus on works that are more representative of the current development
state of distributed CEP systems.

3.1
Query distribution strategy

One characteristic that usually diverges in different distributed CEP
works is how they allocate the continuous queries among the CEP nodes.
One of the possible approaches is the one adopted by (16). It proposes a
implementation of distributed CEP in Mobile Adhoc networks (MANETs).
It provides a mechanism for an automatic statement of CEP rules on the
mobile processing nodes closest to the source with the objective of reducing
the message overhead. It assumes tree types of nodes: A single sink node that
assemble the information from the MANET; Stationary sensor nodes; And
mobile CEP-enabled nodes. Queries that acquire sensor data are allocated to
the mobile node closest to the source sensor node. Queries that aggregate data
from different event streams (flows of events of the same type) are allocated
to the node where the event streams intersect in the MANET.

Another approach on allocating the CEP queries is the one adopted by
(18) which focus on load balancing. Before allocating the queries, the authors’
system needs to receive 3 parameters: All the event types and their expected
input rate (the frequency in which the events are produced); The whole EPN
with the event types consumed by each query; And the number of CEP-enabled
nodes. They named allocation cost the metric used by the system to decide the
allocation plan. The allocation cost for each node Ni is calculated multiplying
two values: InputRatei and UnitRatei. Each query allocated to Ni consumes a
set of event types and uses a number of data operators. The InputRatei is the
sum of the input rates of all those event types. The input rate of each event type
is only summed once, even if it is consumed by more than one query allocated
to Ni. The UnitRatei is the sum of all operators in all queries allocated to

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 3. Related Work 22

Ni. The UnitRatei counts the operator usage, so if the same operator is used
by multiple queries it will be counted multiple times. Then the system uses a
greedy algorithm to decide the allocation of queries, trying to reduce the sum
of the allocation cost of all nodes.

Going even further, some works like (14), allow the execution of queries
in multiple nodes in parallel. First it divides each event stream (flow of events
of the same type) in multiple event streams based on an identifier attribute.
For example RoomTemperature events can be divided in to multiple streams
according to the room_id attribute. Each division is called a partition of the
original event stream. Then each query is split into operators that should be
executed in a sequence. The authors use the term pipeline for each operator
sequence that represent a query. In that work, each operator of a pipeline
could be allocated to a node. Also, some operators can be executed in parallel
in multiple nodes, as long as each event stream partition is directed to a single
node. For instance, a join on RoomTemperature and RoomHumidity can be
executed in parallel as long as events with the same room_id are processed
on the same node.

One characteristic that usually diverges in different distributed CEP
works is how they allocate the continuous queries among the CEP nodes.
One of the possible approaches is the one adopted by (16). It proposes an
implementation of distributed CEP in Mobile Adhoc networks (MANETs).
It provides a mechanism for an automatic statement of CEP rules on the
mobile processing nodes closest to the source to reduce the message overhead. It
assumes three types of nodes: A single sink node that assembles the information
from the MANET; Stationary sensor nodes; And mobile CEP-enabled nodes.
The authors’ system allocates queries that acquire sensor data to the mobile
node closest to the source sensor node. In the same way, it allocates queries
that aggregate different event streams to the node where the event streams
intersect in the MANET.

Another approach on allocating the CEP queries is the one adopted
by (18), which focuses on load balancing. Before allocating the queries, the
authors’ system needs to receive 3 parameters:

1. All the event types and their expected input rate (the frequency of
production of events);

2. The whole EPN with the event types consumed by each query;

3. The number of CEP-enabled nodes.

They named allocation cost the metric used by the system to decide the
allocation plan. The allocation cost for each node Ni is the multiplication of two

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 3. Related Work 23

values: InputRatei and UnitRatei. Each query allocated to Ni consumes a set
of event types and uses a series of data operators. The InputRatei is the sum
of the input rates of all those event types. The input rate of each event type is
only summed once, even if more than one query allocated to Ni consumes the
event type. The UnitRatei is the sum of the number of data operators in all
queries allocated to Ni. The UnitRatei counts the operator usage as indicative
of the query’s complexity, so if multiple queries use the same operator, it will
be counted multiple times. Then the system uses a greedy algorithm to decide
the allocation of queries, trying to reduce the sum of the allocation cost of all
nodes.

Going even further, some works like (14) allow the execution of queries
in multiple nodes in parallel. First, it divides each event stream into multiple
event streams based on an identifier attribute. For example, it is possible
to divide RoomTemperature events into multiple streams according to the
room_id attribute. Each division is called a partition of the original event
stream. Then each query is split into operators that should be executed in a
sequence. The authors use the term pipeline for the representation of a query
as a sequence of operators. Then, the authors’ solution allocates each operator
of a pipeline to a node. Also, some operators can be executed in parallel in
multiple nodes, as long as each event stream partition is directed to a single
node. For instance, a join on RoomTemperature and RoomHumidity can be
executed in parallel as long as events with the same room_id are processed on
the same node.

3.2
Multi-tiered distributed CEP

By combining the execution of CEP in mobile and stationary edge nodes
and cloud nodes, it is possible to take advantage of the proximity of the
edge nodes to the sensor and actuators that assess and interact with the
target entity/environment while also exploiting the cloud’s processing power.
In this sense, (17) provides a Remote Patient Monitoring (RPM) solution
that uses smartphones as edge IoT gateways. The authors propose a multi-
tiered architecture that can distribute the CEP workload between the edge
and the hospital server. The sensors send health sensors data streams to the
smartphone wirelessly. The patient or health agent chooses one of the queries
packed with the smartphone application to process the data streams. The
complex events produced by the smartphones are then sent to the hospital
server to be further processed. There are some limitations in this solution, as
the process of adding new CEP queries would require a recompilation of the

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 3. Related Work 24

smartphone application. Also, the allocation of the CEP queries is performed
manually instead of automatically.

3.3
Context-aware message distribution

Context-awareness is a well-explored field in middleware and communi-
cation software. One of the uses of context-awareness is delivering messages
to nodes that fill a set of contextual requirements, especially location. In this
scope, (19) is a recent work discussing geo-context aware message delivery in
IoT environments. The idea is to forward messages only to nodes within a
given geo-context. This approach can reduce unnecessary data transmissions
or even enable data producers to restrict the information to a given area. The
authors argue, for instance, that weather alert systems can take advantage of
location awareness to notify only the nodes in the area affected by the weather
conditions. The solution proposed in this master thesis indicates that the same
principle of context-aware delivery is applicable in distributed CEP to deploy
CEP queries to nodes depending on their contextual status.

3.4
This Work

Our work proposes a distributed CEP platform that combines stationary
edge nodes, mobile edge nodes, and cloud or clustered processing nodes. This
approach can work very well in the ContexNet environment since the M-
Hub runs on Android devices and can acquire data from sensors, local CEP
processing, and sending resulting events to ContexNet gateways. Likewise,
our solution includes the automatic allocation and reallocation of continuous
queries based on the node’s contextual status, also performing reallocations
in case of disconnections. Compared to other methods of query distribution,
our contextual approach does not inherently increase the scalability or load
balancing. However, the node’s context may be a crucial aspect of the data
acquisition. For instance, our solution enables allocating queries that process
temperature only to nodes with a thermometer available. Or, even more
specifically, among these nodes, only the ones located around a point of
interest. Lastly, our query deployment sequence includes a validation stage
before dispatching the query to a CEP-enabled node. This validation can
prevent the dispatching of poorly written queries that would generate errors
on the node when trying to instantiate the query on the CEP engine. Our
validation can also prevent the dispatching of new queries that would be
incompatible with the current queries.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



4
Proposed Approach

This chapter presents the concepts designed to achieve the objectives of
this master thesis. It presents the model for a platform to build distributed
CEP applications. The model provides the deployment of continuous queries
on heterogeneous devices in an Internet of Mobile Things (IoMT) environment.
The idea is to support the design and implementation of connected Event Pro-
cessing Networks (EPNs) that distribute the data processing among nodes in
different tiers (e.g., Edge and Cloud) and with different processing capabilities.
Our model focuses on the following aspects:

– Easy system management: Our model comprises an simple interface
for stating and assigning continuous queries. This interface also allows
checking aspects of the system status, for instance, the active nodes and
queries.

– Support for heterogeneous devices dispersed in the cloud and
edge of the IoMT: Our solution supports the deployment of queries
to mobile or stationary edge nodes that generally are closer to the data
sources but lack processing power. It also supports the deployment of
queries to cloud nodes, which can generally perform complex operations
that consume the output of edge nodes.

– Facilitate query connection: Each query will produce events as its
output. Those events should then be distributed to the nodes that may
process them. However, before receiving the events, the nodes should
already be able to recognize their event type (i.e., the event’s label and
its set of attributes). Our solution ensures that the nodes that consume
the output of a query will receive both the type of the outputted events
and the events themselves.

– Easy modification of executing queries: During the development
of an EPN, it is common to make adjustments to an already running
query. In our solution it is possible to issue a new version of a query. We
ensure the distribution of the new version to every connected processing
component that was running the old version.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 4. Proposed Approach 26

– Validation of rules before they are deployed: Our model considers
a validation step previous to the actual query deployment. The validation
checks the syntax of queries and if they consume valid event types. We
consider valid the event types that are produced by a previous query
or originated in a data source (e.g., a sensor event). It also checks if
new versions of a query will not impair other queries that consumed the
output of the previous version because they can not consume the output
of the new version.

– Context-based query deployment: Besides assign queries to specific
nodes, the user/system administrator can assign queries to all or one of
the nodes that fill a set of contextual requirements. The platform takes
care of allocating the queries to the necessary nodes by acquiring and
analyzing the contextual attributes of each node.

– Adaptability: Our solution aims to offer adaptable EPNs as it can
automatically allocate and deallocate the continuous queries based on
the contextual status of the nodes disperse in the environment.

4.1
General Architecture

Figure 4.1 displays a general view of the model established in this work.
First, there is a context-based message distribution layer that runs on top
of ContextNet, a middleware with reliable delivery of messages. Additionally,
our model is composed of two elements, a processing component, and a
core component. The processing component does the processing of data
using CEP and can have multiple implementations for different, heterogeneous
devices. In the figure, both Cloud Processing Nodes and Edge Processing
Nodes run implementations of the processing component. They receive and
execute continuous queries that may produce events to be consumed internally
or in other processing components. The core component handles the query
distribution and assists in the correct coupling of the EPN parts. In the figure,
the Core Node implements the core component. A system administrator
interacts with the core component to issue and assign continuous queries.
Section 4.3 present our idea of a Context-based Message Distribution Layer,
Section 4.4 details the core component, and Section 4.5 details the processing
component.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 4. Proposed Approach 27

System
Administrator Cloud

Event Processing Nodes

Edge
Event Processing Nodes

Events

Queries

Queries

Queries

Events

SoC

Context-based Message 
Distribution Layer

ContextNet 
Middleware

Core Node

Figure 4.1: The general architecture of the proposed model.

4.2
Query Deployment Sequence

Figure 4.2 depicts the four steps of the query deployment in our model.
The system receives new or updated continuous queries in the query input

step. This step also comprises the assignment of these queries. We consider
the assignment of queries to a particular processing component or a target
context. A target context may include one or more of the following context
attributes: IoMT tier, processing power, location, minimum/maximum battery
level, and sensor availability. By the IoMT tier, we mean cloud, stationary
edge, and mobile edge. Context-assigned queries may be multicast or unicast.
The system allocates multicast queries to every processing component that
fills the necessary context attributes. However, if the query is unicast, the
system allocates the query to only one of the processing components that fill
the necessary context attributes.

After the query input, the query is validated and distributed to the
processing components. Suppose the query was assigned to a context. In that
case, the distribution step also comprises the query allocation (i.e., selecting
the processing components that will receive the queries based on the contextual
attributes).

The last step is the actual query execution. However, the processing
components may disconnect or change their contextual attributes (e.g., move
out of or into a context’s location). In this case, it may be necessary to return
to the distribution step, so the necessary continuous queries are allocated or
deallocated.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 4. Proposed Approach 28

It is essential to mention that our solution does not grant that queries
assigned as unicast or multicast to a context will at all times be executed
in at least one processing component since no processing component may
fill the necessary contextual attributes. However, it ensures that if there is
a processing component that fills the contextual attributes, the system will
eventually deploy the query on that processing component (i.e., after the time
necessary to process the node’s connection and updated contextual attributes).

Query Input Query 
Validation

Query 
Distribution

Query 
Execution

Disconnection /
Change of Context

Figure 4.2: Query deployment sequence.

4.3
Context-based Message Distribution Layer

Our model includes a layer for the selective delivery of any message based
on the nodes’ contextual attributes to enable context-based query deployment.
Figure 4.3 depicts this layer. It allows the definition of target contexts. Target
contexts delineate a set of required contextual attributes, and any node that
fills these requirements will match the context. The nodes send context update
messages with their contextual attributes to a server module. The server
module is then responsible for detecting when a node matches a context and
storing the matches on amatching table. In short, this layer receives context-
addressed messages as input and forwards them to the nodes that match the
context according to an automatically updated matching table.

Node Y

SoC

Node X

Input
<MSG A, CNTXT 1>
<MSG B, CNTXT 2>
<MSG  C, CNTXT 3>

Match Table

Node Context

X 1, 3

Y 2

Server Module

MSG A, MSG C

MSG B

Context
Updates

Figure 4.3: A general view of the Context-based Message Distribution Layer.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 4. Proposed Approach 29

4.4
The core component

The core component is responsible for offering a system management
interface while also handling the distribution of queries and events. Figure 4.4
contains the representation of the core component and its modules.

Our model offers two interfaces for system management: a monitoring
interface and an input interface. The monitoring interface allows consulting
the status of queries and processing components. For instance, it is possible to
check which processing components are running a query and which queries are
running in a processing component. The input interface allows creating and
updating queries and assigning or unassigning them to processing components
or contexts.

The validation module receives user requests (queries and assignments)
from the input interface and verifies them before they are registered or
executed. Chapter 6 discusses the validation process in more detail. The
assigned queries are encapsulated in context-addressed messages or messages
directly addressed to a specific processing component. These messages then go
to the connection module. The connection module is the core component’s
link with the context-based message distribution layer. It communicates with
the processing components. It also reports connections and disconnections of
processing components to the system status monitor. The system status
monitor is responsible for ensuring the consistency between the queries
allocated to a processing node and the queries executing on the processing
node. For instance, when a processing component connects/reconnects, the
system status monitor makes sure that it has the latest version of every query
allocated to it.

Input
Interface

Validation 
Module

Communication 
Module

System Status 
Monitor

Processing Component 
connection status

User 
Requests

Messages

Monitoring 
Interface

S
ys

te
m

 M
an

ag
em

en
t

Figure 4.4: The Core Component.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 4. Proposed Approach 30

4.5
The Processing Component

We propose a general processing component model that can have specific
implementations for heterogeneous devices. This model is pictured in Figure
4.5.

Like in the core component, the connection module is a link with the
context-based message distribution layer and handles all external communica-
tion. When it receives a message, the message is forwarded to the message
manager. The manager then unwraps the message and extracts its contents.
The messages may contain queries, the definition of event types, or external
events.

The CEP engine instantiates the new queries and registers the event
types. If the message contains an event, it is processed based on the previously
instantiated queries. If the processing component receives a new version of a
query that it is already executing, it removes the old version and instantiates
the new version of the query. In our model, the messages containing a query
also contain some metadata indicating the destination of the events that the
query outputs; Namely, if they should be fed back to the local CEP engine
and/or distributed to other (remote) processing components.

If the message indicates that the processing component should distribute
the output events, the message manager will subscribe to the instantiated
query. The generated events are then encapsulated in messages, and the mes-
sage manager requests the communication module to transmit them. Suppose
the message containing a query indicates that the processing component should
handle the output locally. In that case, the outputted events can be further pro-
cessed by other continuous queries on the same processing component. Also,
the event handler subscribes to those queries. The event handlers on the
processing components function as the sinks of the EPN. Applications devel-
oped using our model can implement the event handler interface to obtain the
output of data processing at the local processing component. Some examples
would be using this data for actuation, storing the data on a database, or
displaying the data on a dashboard.

The data input occurs in the local event source of processing com-
ponents. The local event sources generate events and feed them to the CEP
Engine. For instance, a local event source may gather sensor readings or get
information from online data sources. Our model does not contain a direct
connection between the local event source and the message manager. We be-
lieve it is better to always pre-process the events locally before distributing
them. This pre-processing can reduce network band consumption and even

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 4. Proposed Approach 31

save energy(15).
The last module of the processing component is the context monitor. It

monitors the context attributes, issuing context updates when necessary. The
context updates are sent to the message manager that sends them as a message
directed to the server module of the context-based message distribution layer.

Message
Manager

Communication 
Module

Messages

Event 
Handler

Remote 
Events

CEP Rules
Event TypesLocal 

Events

Local Event 
Source Generated Events

CEP Engine

Context 
Monitor

Context Updates

Figure 4.5: The processing component.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



5
Implementation

This chapter presents details of how we implemented the approach
proposed in the previous chapter. First, it discusses the ContextMatcher,
a context-aware distribution module, and then the Global CEP Manager,
our distributed CEP platform. Our implementation uses Java 1.8 and a
PostgreSQL 12 database with the PostGIS extension and custom stored
procedures.

5.1
ContextMatcher

5.1.1
Target Contexts

A target context defines a set of preconditions that client nodes need to
satisfy to receive context-addressed messages. Target contexts are composed
of one or more contextual attributes that can be:

– Tier: An IoMT tier that can be Cloud, Static Edge, or Mobile Edge;

– Processing Power: An integer that represents the node’s minimum
processing power. The user/application defines the processing power
value of each device. For instance, the user may define a processing power
of 3 for a particular smartphone and 6 for a particular desktop computer;

– Battery Level: A minimum or a maximum percentage of remaining
battery;

– Location: An area where the nodes need be located to match the
target context. It is expressed as geographic coordinates and a radius
(in meters);

– Sensor List: A set of sensors that needs to be available at the node
(e.g., temperature, humidity, accelerometer)

After the registration of a target context at the ContextMatcher, it is possible
to address messages to that target context. In this sense, a target context is

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 5. Implementation 33

similar to a topic in pub/sub communication1. However, while in the pub-
sub mechanism, client nodes need to explicitly subscribe to topics; using the
ContextMatcher, client nodes are automatically matched to a target context
whenever they fill the target context preconditions (tier, location, etc).

5.1.2
ContextMatcher Client Nodes

Client nodes are context-aware nodes that report their contextual at-
tributes to the ContextMatcher module and, therefore, can receive context-
addressed messages. Upon connecting, the client nodes send a connection re-
port containing their id and their static context attributes: the nodes’ IoMT
tier and processing power. The other contextual attributes are reported when-
ever there is some change: When the client node moves, it produces location
updates; When the node connects to, or disconnects from, a sensor, it sends
an update of its sensor list. When the node’s battery drops below some level,
or is being charged, it produces battery level updates.

The primary example of a client node with context reporting capacity is
the M-Hub. The original M-Hub middleware (3) already provided updates of
the battery level and of the location. We added new features to the original
M-Hub project so it would also report the other contextual attributes.

5.1.3
ContextMacher Messages

The messages sent using the ContextMatcher have some attributes or
meta-data that define how they will be distributed.

5.1.3.1
Multicast and Unicast

Messages addressed to a target context can be multicast or unicast. In the
first case, all the nodes that match the target context will receive the multicast
message. In the second case, ContextMatcher only sends unicast messages to
a single node that matches the target context. Hence, the ContextMatcher
randomly chooses one of the nodes that match a target context to receive all
unicast messages, referred to as the unicast node for that target context. If
the chosen node disconnects or unmatches the target context, a new unicast
node is randomly selected. When no nodes match the target context, the first
node that matches will be the unicast node.

1Publish-subscribe is a communication approach that decouples message producers and
consumers. Consumers subscribe to a topic to receive the messages published on the topic
while producers publish messages on the topic

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 5. Implementation 34

In the use case proposed by this work of distributing queries, unicast
can be valuable to avoid data duplicates. Imagine there is a continuous query
Q1 that produces TemperatureRaise events when the temperature surpasses
a certain threshold. We assign that query to a target context that requests
a temperature sensor and to be located in a particular area. There is also
a continuous query Q2 that counts the TemperatureRaise events each day
produces a report. We assign this second rule to a specific cloud node. If
a new node with a temperature sensor enters the area of Q1, there will be
2 TemperatureRaise events for each real temperature rise, causing Q2 to
produce reports with wrong information.

Another usage of unicast messages, outside of query allocation, can be
the following. Imagine a home with two senior parents that sometimes receive
visits from their adult children. Both parents have smartphones that can send
commands to the house garage door. Like in many other garage doors, the
same command is used to open or close the door, depending on the door state.
Their children’s smartphones cannot control the garage door. However, they
can send context-addressed messages (using a location target context) to the
parents’ smartphones requesting to open/close the door. If both parents are
home, the command will be sent twice, possibly causing the door to open and
quickly close back.

5.1.3.2
Retained Messages (OnMatch / OnUnmatch)

We refer to the regular messages that ContextMatcher just sends right
away to matching nodes as instant messages. Besides instant messages, the
ContextMatcher also supports retained messages. Retained messages are saved
in the ContextMatcher DB for posterior re-sending and can be of two kinds:
onMatch or onUnMatch. When assigned, onMatch messages are both stored
and sent right away as if they were instant messages. Because they are stored,
eventually, when a client node matches a target context, it will receive all the
target context’s multicast onMatch messages. Likewise, when the node un-
matches the target context, it will receive all the target context’s multicast
onUnMatch messages. However, unlike onMatch messages, onUnMatch mes-
sages are not sent right away to any node. They are only sent when a unmatch
occurs. Retained messages can also be unicast. Nevertheless, since unicast mes-
sages are addressed only to the unicast node, the system only sends unicast
onMatch messages when it selects a new unicast node. Also, the system sends
only sends unicast onUnMatch messages when the unicast node unmatches the
target context. It is also possible to define retained messages directly addressed

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 5. Implementation 35

to a client node. The system sends those messages when the node connects.
Again in the subject of context-based query distribution, if we wish to

deploy queries to client nodes that match a target context and remove the
queries when the nodes unmatch the context, we could use an onMatch message
with the query and an onUnMatch that requests the removal of the query.

As an example of usability of retained messages outside of the query
distribution scope, imagine electric cars as client nodes. Then we could create
a target context for nodes with battery charges under 20% located near a
charging station. An onMatch message could request the car to display on the
dashboard a note suggesting a stop in the charging station. An onUnMatch
message could request the removal of the note.

5.1.3.3
Message Priority

Context updates and node re-connections can trigger the sending of
multiple retained messages to the same node. In those cases, it may be essential
to deliver some messages first. For instance, before implementing a query, a
node first needs to know the event type of the events that the query takes
as input. That is similar to how on a database, it is only possible to run
SELECT queries on tables that are already created. Therefore we wanted to
enable delivering messages containing event types before delivering messages
containing continuous queries. Ordered delivery of messages could also have
other uses outside of this work’s query delivery scope. For example, in a
hypothetical use case where client nodes can receive over-the-air software
updates, messages caring critical software updates could be delivered first.

To tackle this kind of situation, ContextMatcher offers message priority
for retained messages. When registering a retained message, the priority is a
simple 4 bytes integer. When the system has to deliver multiple messages to
the same node, it sends first the messages with higher priority.

5.1.4
ContextMatcher Server Module

Besides the methods that the client nodes need to implement to re-
port their contextual status and receive context-addressed messages, the Con-
textMatcher Server Module concentrates all operations of the ContextMatcher.
This module can be incorporated into a ContextNet Core application, handling
the communication with client nodes. It is also possible to deploy the Server
Module as a standalone service accessible through a REST API.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 5. Implementation 36

Figure 5.1 presents the main components of the ContextMatcher Server
Module. The API offers methods to declare new target contexts and send
or register context-addressed or directly addressed messages. The database
stores the target contexts, the retained messages, and the information about
the client nodes (i.e., id, contextual attributes, and connection status). It also
stores the current matches of nodes and target contexts. Besides storing data
in the DB, the ContextMatcher Server Module also installs a series of stored
procedures in the database. Stored procedures are new functions that can be
programmed in the database using a procedural language (e.g., PL/pgSQL2).
These stored procedures transfer some of the data operations performed by
the ContextMatcher from the Java software to the database. For instance,
automatic triggers on the database perform the matches of client nodes and
target contexts. We explain why we decided to use stored procedures in
Subsection 5.1.5.

The client message handler receives the messages from the client nodes.
The application using the ContextMatcher Server Module can listen to any
messages received in the client message handler using the Java API (that
option is not available in the REST API). Besides that, the client message
handler will always handle the messages with connection reports or context
updates, using the information extracted from those messages as parameters
for calls to the database’s stored procedures. These calls can trigger several
operations. Client connection reports from nodes not registered in the database
will cause the addition of the node to the database. Both the connection
reports and context updates may trigger context matches and unmatches. As a
result of matches and unmatches, the database will return a list with retained
messages to be sent to the node. They can be messages directly addressed to
the nodes, onMatch messages to the target contexts that the node matched, or
onUnMatch messages to the target contexts that the node unmatched. If the
client node matches a target context that had no other matches, the message
list will also include the target context’s unicast onMatch messages. Suppose
the node is a target context’s unicast node, and the node unmatches the target
context. Besides including the target context’s unicast onUnMatch messages
in the list, the database will select one of the other nodes (if there is any)
that match the target context as the new target context’s unicast node. In
that case, the database will return an additional list of messages addressed
to the new unicast node and containing the target context’s unicast onMatch
messages. Besides the application using the ContextMatcher API, client nodes

2PL/pgSQL is the procedural language used to create stored procedures in PostgreSQL
databases. https://www.postgresql.org/docs/12/plpgsql-overview.html

https://www.postgresql.org/docs/12/plpgsql-overview.html
DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 5. Implementation 37

can also send context-addressed messages. These are delivered to the necessary
nodes by the message forwarder after getting the list of nodes that match the
target context from the database. The message forwarder is a simple module
that receives messages with a list of recipients and delivers the messages using
the ContextNet middleware.

The ContextMacher also takes advantage that the ContextNet middle-
ware enables listening to client node disconnections. When a client node dis-
connects, the node’s contextual attributes and matches are deleted from the
database. Also, if the node was the unicast node for any target context, the
ContextMatcher will try to select a new unicast node.

ContextMatcher Server Module

API

Client
Message
Handler

Message
Forwarder

Database
(with Stored Procedures)

ContextNet Middleware

Figure 5.1: The ContextMatcher Server Module.

5.1.5
Justificaton for Stored Procedures

Given that the database stores all the information of target contexts
and client nodes, we decided to delegate a great portion of the contextual
data handling to the DB as stored procedures instead of concentrating it
all in the Java software. To perform all the operations in Java, it would
be necessary to load a lot of the stored information in the Java software
to process and then update the data stored in the database. This loading
could potentially represent a significant overhead. For instance, with every
new client node context update, it would be necessary to load the data of
all target contexts to check for matches and unmatches. Then the database
would be updated based on the new matches and unmatches. Matches and
unmatches would also mean that other database accesses would be required to

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 5. Implementation 38

get the necessary onMatch and on UnMatch retained messages. By using stored
procedures, when a context update is received, the Java portion only performs
one procedure call instead of multiple database requests. This procedure call
performs triggers all the necessary operations, ultimately returning the same
retained messages.

5.2
Global CEP Manager

To implement the proposed model, we developed the Global CEP Man-
ager (GCM). GCM is a distributed CEP platform for ContextNet nodes. We
implemented the core component as the GCM Core, a service that runs in a
ContexNet core node. We developed distinct implementations of the processing
component for different devices; we call them Processing Agents (PA). We de-
veloped a cloud PA for regular computers or servers and a stationary edge PA
for the Raspberry Pi. We also adapted the M-Hub and the MEPA service to
make it compatible with GCM as a mobile PA. Every PA is a ContextMatcher
client node as well.

We adopted the Esper CEP engine as it is open source and uses
Event Processing Language (EPL) similar to SQL to describe continuous
queries. In our implementation, each continuous query has the followingmeta-
information:

– A user provided label that identifies the query.

– An optional target context. The GCM dispatches the events outputted
by the query as instant context-addressed messages to the target context.

– A boolean attribute named consumeLocally indicating if the events
outputted by the query should be fed back to the CEP engine of the
local PA.

– A timestamp of the query creation or modification. This timestamp
is automatically generated on the GCM Core and represents the query
version since we support query updates.

– A boolean attribute indicating if the query contains a high priority
statement. High priority statements are queries that do not actually
perform event processing. They contain statements that create structures
necessary for other queries, for instance, statements that create variables,
views, etc. GCM deliveries queries containing high priority statements
before regular queries by using the message priority offered by the
ContextMatcher. Event types do not use high priority statements; they

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 5. Implementation 39

have their particular message structure with an even higher priority in
the delivery.

5.2.1
GCM Core

The Global CEP Manager Core acts as the core component we defined
in subsection 4.4. The Figure 5.2 displays the architecture of the GCM Core.

TheGCM Core API implements both the monitoring interface and the
input interface described in our model. It provides Java methods to create and
update continuous queries or allocate them to PAs and methods to check their
status. If the API receives a new query, it forwards the query to the validator.
The validator implements the validation module. It checks if the queries are
syntactically correct in Esper EPL, if they process existing event streams,
and assists in maintaining the mutual consistency of continuous queries. The
validation process is better detailed in Chapter 6. If the validation fails, the
validator produces a syntax error. If the validation is successful, the validator
generates three messages and register them on the ContextMatcher:

– A message with the event type of the events that will be output by
the query. First, the validator generates the event type using the items
that the query selects as attributes and EvtOf<query label> as the event
type label. Then the event type is registered as a retained message on the
ContextMatcher with priority 3. If the query’s meta-information includes
a target context, this message is designated as a multicast onMatch
message addressed to the target context

– A message with the query itself. It will contain both the query and the
query’s meta-information. The message’s priority depends if the query is
a high priority statements. If it is a regular query, the priority will be 1;
if it is a high priority statement, the priority will be 2. After registration,
the message is not designated to any target context nor processing agent
since the system administrator needs to assign the query.

– A message that requests the removal of the query. These messages will
always have priority 1. Also, similar to the messages with queries, the
validator does not designate the message to any target context nor
processing agent until the query’s assignment.

So, the registered messages obey the following order from highest to lowest
priority: event types, high priority statements, regular queries and query
removal.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 5. Implementation 40

If the GCM Core API receives a query assignment, the validator also
validates the assignment. Suppose the query is not assigned to a target context
but directly assigned to a PA. In that case, it needs to be a PA previously
registered. Since PAs are ContextMatcher client nodes, their registration
occurs automatically when they first connect. Nevertheless, the GCM API also
offers methods that allow the system administrator to register PAs manually.
The validator also prevents the assignment of a query both as unicast and
multicast to the same context. After the assignment validation, if the query
was assigned to a target context, the query’s message will be designated
as an onMatch message addressed to the target context. The validator also
registers the message requesting the query’s removal as onUnMatch for the
target context. That way, the ContextMatcher will automatically send the
query to any PA that matches the target context. Also, if the PA unmatches
the target context, the ContextMatcher will automatically send to the PA the
message requesting the query’s removal. Whenever a query is directly assigned,
the validator registers it as a direct retained message, and the ContextMatcher
will send the query as soon as the node connects. The query set comparator
uses the ContextMatcher’s API to listen to the client messages. If the message
contains a connection report, the comparator issues a direct instant message
to the connected PA requesting the set of queries present in the PA. For
each query, the PA will send the label and timestamp (version). Then the
comparator contrasts the set sent by the PA with the queries that should
be present in the PA according to the ContextMatcher’s DB. These are the
queries directly assigned or the queries assigned to the PA’s matched target
contexts, including unicast queries if the PA is the target context’s unicast
node. It will then issue new instant messages to the PA to ensure that the
PA has all and only the queries it should have, and they are all on the latest
version. Subsequently, the query set comparator will send a last message to
notify the PA that its queries are consistent with the queries assigned to it.

ContextMatcher 
Server Module

APIValidator Query Set 
Comparator 

GCM Core 
API

Query/
Assignment
Event label/
Syntax error

Retained 
Messages

...

Client 
Messages

Instant 
Messages

Database

Figure 5.2: The Global CEP Manager Core.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 5. Implementation 41

5.2.2
Processing Agent (PA)

The Figure 5.3 contains the general architecture of the PAs. This archi-
tecture is very similar to the processing component proposed in our model.
The event input interface and query subscriber interface perform the
local event source functions and the event handler, respectively. They are Java
interfaces the applications using our platform can implement. The S2PA ser-
vice acts as an event input interface in the M-Hub, collecting sensor data and
encapsulating in raw events. It is also possible to implement event input inter-
faces for data from sensors connected to a Raspberry. A possible event input
interface implementation in Cloud Processing Agents could be a web crawler
that gathers information from web sites and feed as event data. We included
an engine manager that handles adding and removing continuous queries
from the EsperCEP engine and feeding it events and collecting the queries’
output. The context reporter acts as the context monitor, using the device
APIs to get contextual information. The M-Hub for instance already offers a
location API and a battery monitor API, we added another API to the M-Hub
that keeps a list of the connected sensors and pushes every change to this list
to the context reporter. We also added a field in the M-Hub’s GUI where the
user can state processing power for that particular device.

Message 
Manager

ContextNet 
Interface

Messages

Query 
Subscriber 
Interface

Engine 
Manager

Remote 
Events

CEP Rules
Event Types

Query 

Output

Event Input 
Interface

Events

EsperCEP

M-Hub’s
S2PA

Context 
Reporter

Context Updates

Battery APILocation 
API Sensor API

Figure 5.3: The Global CEP Manager Processing Agent.

5.2.3
Offline PA Behavior

When a Processing Agent (PA) disconnects, the GCM Core cannot send
any requests to remove queries to that particular PA. It means that before the

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 5. Implementation 42

PA reconnects and the core can make sure that the PA is running all (and
only) the queries assigned to it, the PA may be running queries it should not.
The Global CEP Manager API allows the system administrator to establish
that when a PA disconnect, it should disable some of its functionality until the
GCM Core restores the consistency between the queries assigned to the PA and
the queries running on it. It is possible to disable only the emission of external
events (events that would be forwarded to other PAs) or completely disabling
the CEP engine until the consistency is restored. Upon disconnection, the PA
will disable the selected functions until it receives the query set comparator’s
message that notifies that the consistency has been re-established.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



6
Validation of Continuous Queries

The GCM includes a validation module to assist in preserving the internal
and external consistency of Continuous Queries (CQ) in the EPN before they
are deployed to the Processing Agents (PA). This chapter presents in discursive
text which consistencies the validation module assures and when validation
module actuates to assure them. Also, a formal definition of those consistencies
in the form of invariants that are forced on CQs as well as how they are assigned
will be presented.

6.1
Basic Concepts and Notations

The basic elements and concepts managed by the GCM are the following.

Event Type (E) has:
label/name - Label
set of typed Attributes - Attrib

Continuous Query (CQ) has:
label/name - Label
the query version - Version
set of Precedent Event Types - Precedent
a Consequent Event Type - Consequent

GCM Processing Agent (PA) (i.e. a CEP capable node) has:
set of deployed Continuous Queries (CQs) - DeployedQueries, (or CQ ⊗ PA)
is (momentarily) in a set of Contexts - CurrContexts

Context (Cxt) has:
a set of context attributes as listed in the subsection 5.1.1
a distribution mode (Unicast or Multicast)

GCMCore has:
set of registered CQs - RegQueries
set of registered Es - RegEventTypes

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 6. Validation of Continuous Queries 44

set of registered Processing Agents - RegAgents
set of registered contexts - RegContexts
table of CQ assignments to Processing Agents - AssignedQueries(PA)
table of CQ assignments to Contexts -AssignedQueries(C)

6.2
The invariants about system consistency

The invariant enforcement is related to each query individually (e.g.,
if it is synthetically correct), and the inter-query consistency, meaning that
queries that are dependent on each other must keep playing well together. The
corresponding validations occur in the five situations below:

6.2.1
When a new query is submitted

When a new CQ is submitted, the validator performs a series of tests.
First it checks if the query respects the syntax of the Esper EPL version 4.8. It
also checks if the query consults only valid event types where valid event types
are those previously registered in the GCM Core. The events may be produced
by queries or by event sources. Lastly, the validator checks if the query does
not try to process an event attribute that is not present in the event type.

Invariants

– valid(CQy) =⇒ CQy syntactically correct EsperEPL v4.8

– registered(E1) ⇐⇒ E1 ∈ GCMCore.RegEventTypes

– valid(E1, A) ⇐⇒ registered(E1) ∧ A ∈ E1.Attributes

– Ex ∈ CQy.P recedent ∨ Ex ∈ CQy.Consequent =⇒ registered(Ex)

– Ex.A ∧ Ex ∈ CQy.P recedent =⇒ valid(E1, A)

6.2.2
When a new version of a query is submitted

– Consider that events produced by query CQx are consumed by another
query CQy and a new version of the previous query, say CQ

′
x is intro-

duced.

– Then this new version must generate events of a Event Type with the
same label, and (at least) all the attributes of the events of the previous
version, CQx .

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 6. Validation of Continuous Queries 45

Invariant

– E1 ∈ CQy.P recedent ∧ E1 = CQx.Consequent ∧ E2 =
CQ

′
x.Consequent =⇒

name(E1) = name(E2) ∧ label(E1) = label(E2) ∧ (∀Ai ∈ E1.Attrib =⇒
Ai ∈ E2.Attrib)

6.2.3
When a query is directly assigned to a Processing Agent

When a continuous query CQ is directly assigned to a GCM Processing
Agent, the query and the GCM Processing Agent must have been previously
registered in the GCM Core.

Invariants

– CQy ⊗ PAi =⇒ PAi ∈ GCMCore.RegAgents ∧ CQy ∈
GCMCore.RegQueries

– ∧ ∀Ei ∈ CQy.P recedent ∨ CQy.Consequent =⇒ .registered(Ei)

6.2.4
When a query is assigned to a context

When a query is assigned to a context, the query and the context must
have been registered on the GCM Core. And the query must not have been
already registered to the same context in another distribution mode (unicast
or multicast).

Invariant

– CQy ⊗ Cxti =⇒ Cxti ∈ GCMCore.RegContexts ∧ CQy ∈
GCMCore.RegQueries

∧ ¬(CQy in Cxti.DistrMode = Unicast ∧ CQy in Cxti.DistrMode =
Multicast)

6.2.5
When a GCM Processing Agent reconnects to the GCM Core

When a GCM Processing Agent disconnects and reconnects, say PAi,
the set of CQ allocated to it may have changed. That is: there may be new
queries, there may be new versions of deployed queries or old queries may have
been removed from the set of allocated queries.

Hence, when the GCM Processing Agent reconnects to the system, the
invariants have to be re-applied (and verified) for this agent and will eventually

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 6. Validation of Continuous Queries 46

hold again. Since it may take some time until a reconnected PA will be correctly
reintegrated and updated with the CQs, we can say only that eventually the
invariant will hold, if the PA stays connected for a sufficient period of time.
Operator diamond, �, is the "eventually qualifier" used in the formulations
below.

Invariants

– PAi is connected =⇒ � (GCMCore.AssignedQueries(PAi) =
PAi.DeployedQueries)

– PAi is connected ∧ Cxt ∈ PAi.CurrContexts =⇒
� (GCMCore.AssignedQueries(Cxt) = PAi.DeployedQueries)

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



7
Evaluation

This chapter presents the tests and experiments we executed to evaluate
our work. The objective was to demonstrate the applicability and test the
performance of the Global CEP Manager (GCM) and the ContextMatcher.
Section 7.1, presents a possible use case for the GCM. Section 7.2 presents the
real setup we used to implement the use case. Section 7.3 presents the GCM
tests and Section 7.4 the ContextMatcher tests.

7.1
Case Study

In this section we demonstrate a smart office use case to evidence a
possible application of GCM. Latter, in the performance tests, the same use
case will be adopted with some variations. The objective in this application
scenario is to automatically turn on and off the air conditioner (AC) in the
office rooms based on the current temperature and the presence or not of people
in the room.

Figure 7.1 displays the sensors, actuators and devices available. Each
room is equipped with a Bluetooth beacon and multiple temperature sensors.
The beacon broadcasts the room number every 2 seconds and the temperature
sensors dispersed in the room can connect to M-Hubs and provide temperature
readings. The M-Hub application can be installed in the office workers smart-
phones, providing multiple Mobile Edge Processing Agents. The scenario also
includes the GCM Core and a Cloud Processing Agent running in the cloud.
Lastly, a Raspberry Pi that can actuate as a Stationary Edge Processing Agent
is installed in each room, the Raspberries are equipped with a presence sensor
and an infrared transmitter both connected to the GPIO ports.

The M-Hubs will automatically connect to the sensors and produce
SensorData events with the temperature readings. To reduce the effect of the
natural noise in sensor readings, the M-Hubs calculate the average temperature
of each 3 SensorData events producing EvtOfAvgTemp events. The M-Hubs
will also produce Beacon events with the room number when they receive the
beacon broadcast. The current room is stored in the variable var_currRoom,
which is updated after each new Beacon event is received, and cleaned (set to

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 7. Evaluation 48

-1) if no Beacon event is received in 5 seconds. Finally, if the var_currRoom
has a valid value, the M-Hubs will produce EvtOfRoomTemp events with the
temperature and the current room after each EvtOfAvgTemp event. These
EvtOfRoomTemp events will be sent to the Cloud Processing Agent. The Cloud
Processing Agent gathers all the EvtOfRoomTemp events for each room from
all M-Hubs. If more than 60% of the events have temperatures above 25°C, it
produces EvtOfRoomTempOver events which are sent to the Raspberries. The
Raspberries store if the AC is on or off in the var_isACOn. Presence events
with the room number will be produced in the Raspberry every 2 seconds
if the presence sensor detects presence. If the AC is off and a Raspberry
receives an EvtOfRoomTempOver within 5 seconds after a Presence event, the
Raspberry will produce an EvtOfTurnACOn event. If the AC is on and there is
a 10 minutes window with no Presence events, the Raspberry will produce an
EvtOfTurnACOff event. The EvtOfTurnACOn and EvtOfTurnACOff events will
trigger an actuation with the IR transmitter and the update of var_isACOn
value. Listing 7.1 contains the EPL code of continuous queries for the M-
Hubs. They were assigned as multicast since they should run on every M-
Hub. Listing 7.2 contains the EPL code of continuous queries for the Cloud
Processing Agent. They were assigned as unicast since they should aggregate
the EvtOfRoomTemp events produced by all M-Hubs in a single place. Listing
7.3 contains the EPL code of continuous queries for the Raspberries, they were
assigned as multicast since we assume there is only one Raspberry installed in
each room.

GCM Core
Cloud Processing

Node

R
oo

m RPI

IR Transmitter

Presence Sensor

Temperature Sensor

Room 
Beacon

Temperature Sensor

Air Conditioner

Figure 7.1: Use Case

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 7. Evaluation 49

This use case presents a real-world scenario where our solution could
be applied and is useful. By automating turning the AC on and off, it is
possible to save energy, and the occupants don’t need to manually perform
these operations anymore.

Listing 7.1: M-Hub queries.� �
1 -- Label: createCurrRoom | Create the variable that stores the

current room.

2 create variable int var_currRoom = -1

3

4 -- Label: setCurrRoom | Sets the current room upon a new Beacon

event.

5 on Beacon as b set var_currRoom = b.room

6

7 -- Label: unsetCurrRoom | Cleans the current room upon 5 seconds

without a Beacon event

8 on pattern[every (timer:interval(5 sec) and not b=Beacon)] set

var_currRoom = -1

9

10 -- Label: AvgTemp | Calculate the average of each 3 SensorData

events with temperature readings.

11 select avg(sensorValue[0]) as temp from

SensorData(sensorName=’Temperature’).win:length_batch(3)

12

13 -- Label: RoomTemp | Suplement the average temperature with the room

id when available

14 select var_currRoom as room, a.temp as temp, current_timestamp() as

timestamp from EvtOfAvgTemp as a where var_currRoom >= 0� �
Listing 7.2: Cloud Processing Agent queries.� �

1 -- Label: SegmentedByRoom | Enable the segmentation of EvtOfRoomTemp

events by the room id

2 create context SegmentedByRoom partition by room from EvtOfRoomTemp

3

4 -- Label: RoomTempOver | Each 10 seconds, gathers all the

EvtOfRoomTemp received for each room. Triggers if more than 60%

of the events have temperature values are over the threshold

5 context SegmentedByRoom

6 select context.key1 as room, count(*, temp>25) as ct_out, count(*)

as ct_all, current_timestamp() as timestamp

7 from EvtOfRoomTemp.win:time_batch(10 sec) having count(*,

temp>25)>=(0.6*count(*))� �

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 7. Evaluation 50

Listing 7.3: Raspbery queries.� �
1 -- Label: createIsAcOn | Create the variable that stores if the AC

is on.

2 create variable boolean var_isACOn = false

3

4 -- Label: TurnACOff | Turns the AC off if no presence is detected in

10 minutes

5 select p.room as room, current_timestamp() as timestamp

6 from pattern [every (timer:interval(10 minutes) and not p=Presence)]

where var_isACOn = true

7

8 -- Label: TurnACOn | Turns the AC on if presence is detected and

RoomTempOver is activated within 5 seconds

9 select p.room as room, current_timestamp() as timestamp

10 from pattern [every (timer:interval(10 minutes) and not p=Presence)]

where var_isACOn = true

11

12 -- Label: setIsACOnTrue | Sets the var_isACOn as true when a

EvtOfTurnACOn is received

13 on EvtOfTurnACOn set var_isACOn=true

14

15 -- Label: setIsACOnFalse | Sets the var_isACOn as fasle when a

EvtOfTurnACOff is received

16 on EvtOfTurnACOff set var_isACOn=false� �
7.2
Real Test Setup

This subsection will detail the setup we used to test the presented use
case. First, we simulated some devices instead of using real hardware. Instead
of using real sensors, the smartphones play a synthetic dataset in a loop to
produce the SensorData events. They also play simulated Beacon events,
always indicating the same room. We used a virtual presence sensor in the
Raspberry, producing Presence events every 2 seconds, and the Turn On
and Turn Off commands are printed on the screen instead of sent to an IR
transmitter.

Other than this simulated equipment, we used the real devices presented
in Table 2. We used both smartphones simultaneously, running the same
code and EPL queries. The Dell laptop is responsible for the GCM Core, the
ContextNet gateway, and the Cloud Processing Agent, each executing inside

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 7. Evaluation 51

its own Docker1 container using the Windows Subsystem for Linux2 2 (WSL 2)
backend. We also execute the Stationary Edge Processing Agent on a Docker
container; however, this container is hosted in the Raspberry.

Device Processor RAM Operating System
Samsung
Galaxy S6

Exynos 7420
4x 1.5GHz + 4x 2.1GHz

3 GB Android 7.0

Sony
Xperia Z2

Snapdragon 801
4x 2.4GHz

3 GB Android 6.0.1

Dell
G7 7588

Intel Core i7-8750H
6x 2.2-4.1GHz

16 GB Ubuntu 20.04 on Docker
over WSL2 Windows 10

Raspberry Pi
4 model B

Broadcom BCM2711
4x 1.5GHz

4 GB Alphine 3.13 on Docker
over Raspbian 10

Table 7.1: List of devices.

7.3
Global CEP Manager Performance Tests

We used the setup presented in the previous sections to execute per-
formance tests of the GCM. We executed multiple tests measuring the CPU
usage by each container or the M-Hub modifying the speed of the generation
of SensorData events. To execute this modification, we used different delays
between the playing of entries in the temperature dataset. For each delay, we
repeated the test 50 times, running for 10 minutes each time.

Our objective was to measure and compare how each component behaves
as we demand the production and processing of more and more temperature
events per second. This test can provide indications of the system’s scalability
and limits. The values of average CPU usage in each test are displayed in
Figure 7.2. To acquire the CPU usage of the M-Hubs, we used the Android
Profiler3 available on Android Studio4. Therefore the values are presented as a
percentage of the full mobile CPU processing capacity. In the DELL laptop and
Raspberry, we adopted Docker’s CPU usage values, using the docker stats
command. Therefore, the CPU usage values for the containers are a percentage
of a single CPU core capacity. That means that the container running the

1Docker is a virtualization platform to run applications inside containers. https://www.
docker.com/

2WSL is a compatibility layer for running Linux executables on Windows. https:
//docs.microsoft.com/en-us/windows/wsl/

3Android Profiler is a tool to monitor resource usage of Android applications https:
//developer.android.com/studio/profile/android-profiler?hl=en

4Android Studio is an IDE for developing Android applications. https://developer.
android.com/studio?hl=en

https://www.docker.com/
https://www.docker.com/
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/
https://developer.android.com/studio/profile/android-profiler?hl=en
https://developer.android.com/studio/profile/android-profiler?hl=en
https://developer.android.com/studio?hl=en
https://developer.android.com/studio?hl=en
DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 7. Evaluation 52

Galaxy S6 Xperia Z2 Gateway GCM Core Database Cloud PA Stationary PA0

10

20

30

40

50

60
CP

U%

1.
87 2.
93

2.
94

3.
06

1.
79

1.
69 3.
808.

43

20
.2

0

11
.7

0

9.
28

3.
76 6.
03

4.
32

14
.8

3

31
.9

3 36
.1

5

22
.7

9

11
.4

5 18
.0

0

4.
71

15
.3

2

32
.9

7

46
.1

9

24
.0

7

13
.3

1

21
.6

4

4.
37

Average CPU usage with different delays between Temperature Events
100ms
10ms
2ms
1ms

Figure 7.2: Global CEP Manager CPU Usage

Device\Delay 1ms 2ms 10ms 100ms
Galaxy S6 160.85 152.78 33.32 3.33
Xperia Z2 171.06 166.63 33.33 3.33
Expected 333.33 166.66 33.33 3.33

Table 7.2: EvtOfAvgTemp produced per second in each test.

gateway used on average 46.19% of a single core of the Dell laptop’s CPU in
the tests with 1ms delay. In the same test, the M-Hub used on average 15.32%
of the total (all cores) processing power offered by the Galaxy S6.

Using the same test parameters, we also measured how many
EvtOfAvgTemp each android device was able to produce in each case. Ta-
ble 7.2 contains our measurement of how many events were produced and how
many were expected given the delay.

This set of tests evaluate if the system can handle a very fast event
output. The results indicate that the system performs well in the tests with
delays between 100ms and 2ms, hitting a bottleneck at 1ms. We can notice
this bottleneck in Table 7.2 as the values are very close to the expected in
every column. Except for the 1ms column that drops significantly below the
expected value. We believe that is the limit of how fast the devices can replay
the events since this operation is not parallelizable and the CPU usages did
not hit close to 100%. Nevertheless, our tests indicate that our system can
handle well up to 500 SensorEvents per second from each smartphone in this
use case, totaling 1000 SensorEvents per second.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 7. Evaluation 53

7.4
ContextMatcher Performance Tests

To evaluate the performance of ContextMatcher we tested how long
it takes to perform two kind of operations: the match of nodes and target
contexts, and the reallocation of queries or messages from one node to another.

7.4.1
Matching Tests

To evaluate the performance of the ContextMatcher module in the
process of matching a client node with a target context considering different
context requirements, we created 4 target contexts, one for each supported
contextual requirement:

1. A target context that requires the Client Node to have humidity, tem-
perature, smoke, radiation and a thermistor sensors available.

2. A target context that requests that the Client Node to be located within
30 meters of the -22.980012557839675, -43.23316465427693 coordinates.

3. A target context that requests that the Client Node is in the Stationary
Edge tier;

4. A target context that requests that the Client Node’s battery has above
60% charge.

Our objective was to measure how long it would take for the Con-
textMathcher to match a client node with each target context. A context match
occurs when a node sends a message with a context update as we previously
explained. The ContextMatcher server module process that message, checking
for new matches. To measure how long this process takes, ideally, we would
measure the time interval from the moment the node sends the message to
the moment the ContexMatcher performs the match. However, since the node
and the ContextMatcher sever module would run in different devices that do
not share a clock, we decided to use only the clock in the device running the
ContextMatcher server module to measure time. To execute this test, we cre-
ated a method to request the client Node to issue a mock context update that
would trigger the match with the target contexts. That way, the computer
running the ContextMatcher server module could issue these requests. That
said, in our tests, we measured the time interval starting when the request was
sent and ending when the ContextMatcher performed the match. That interval
also encompasses the time necessary for the client node to receive the request

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 7. Evaluation 54

and send the context update. We executed the tests both running the client
node and the ContextMatch server module in the same computer and using a
different computer connected to the same wi-fi network. That way, we could
have an idea of how much the link between the two devices would impact our
results. We used the Dell laptop to run the ContextMatch server module and
the local client and a Raspberry Pi to run the external client. Table 7.1 lists
both devices. In these tests, we did not use Docker containers. We ran the
software directly on the host OS, since we did not wanted to measure the CPU
usage of each component. We populated the database with 100 dummy Client
Nodes, and for each combination of target context and local or external client,
we executed the match test 50 times and calculated the averages. Figures 7.3
and 7.4 display the results for the local and external client, respectively.

The results indicate that the ContextMatcher can perform matches of
client nodes and target contexts with a delay in the order of milliseconds,
even for the node connected via wi-fi. The matches with the target context
that requires a set of sensors take significantly longer. That is because the
target context’s sensors and the client node’s sensors are lists of strings, and
it takes longer to compare them than to compare the battery, for instance,
which is represented as an integer. Also, even though checking if a coordinate is
within an area sounds a lot more complex than comparing integers, the location
matches take just a little longer than the tier and battery tests. That is because
of how optimized the spatial databases (e.g., PostgreSQL with PostGIS) are
in calculating spatial comparisons.

Sensors Location Tier Battery0

10

20

30

40

Ti
m

e 
in

 m
illi

se
co

nd
s

25.87

9.73 7.30 7.78

Match delay with local client

Figure 7.3: Tests with a locally hosted Client Node.

7.4.2
Reallocaction Tests

Our second test of the ContextMatcher measured how long the system
would take to reallocate unicast queries. In this test, we used the setup from

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 7. Evaluation 55

Sensors Location Tier Battery0

10

20

30

40

Ti
m

e 
in

 m
illi

se
co

nd
s

26.94
16.50 14.46 14.90

Match delay with external client

Figure 7.4: Tests with the Client Node running in the Raspberry.

the case study (Sections 7.1 and 7.2). ContextMatcher server module is a
component of the GCM Core as depicted in Section 5.2, Figure 5.2. In this test,
we assigned the M-Hub queries (Listings 7.1) as unicast instead of multicast.
We connected the Samsung smartphone first so the ContextMatcher would
allocate the queries for it. Then, after connecting the Sony smartphone and
waiting a few seconds, we disconnected the Samsung smartphone so the system
would reallocate the queries for the Sony smartphone. We measured the time
interval from the moment the disconnection was detected on the GCM Core
until the GCM Core received query status reports from the Sony smartphone
stating that the queries are active. We repeated this test 50 times. Table 7.3
presents the average delay from detecting the disconnection until the first query
status report and until the last query status report.

The query reallocation involves a series of operations, including sending
messages, updating the DB allocation table, and the time the Esper CEP
engine takes to instantiate new queries. The test results display that those
operations take around 100 ms in the environment tested. Depending on
how long the ContextNet middleware takes to report the node disconnection,
reallocating queries this fast means we can avoid most event losings while the
system is reallocating queries.

Metric Delay Until First Query Until Last Query
Average (ms) 91 118

Standard Deviation 12.87 14.01

Table 7.3: Delay until the query is relocated.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



8
Conclusions

This chapter concludes this master thesis, presenting our final remarks,
and directions for future works. Also, this chapter lists the contributions of
this work and the publication that originated from it.

With the increasing use of the Internet of Things (IoT), more and
more stream processing applications and services are deployed for monitoring
and controlling real-world activities, people and assets. In these systems,
situation-aware sensors and IoT devices embedded in the environment generate
distributed, asynchronous and steady streams of heterogeneous data that have
to be processed by stream processing technologies, in our case CEP. But a
centralized execution of CEP is not ideal for coping with the high volume,
velocity, and volatility of data streams from IoT sensors. Instead, the CEP
Event Processing Network (EPN) should be distributed, preferably having
CEP agents both in the cloud/cluster and in edge devices. The contextual
status (e.g., location, processing power, battery level, and available sensors)
can be fundamental in planning how to distribute this EPN. That is because
these factors can determine which devices are suited to acquire and process
the data.

In this regard, this master thesis presents a platform for distributed CEP
applications that allows the context-aware deployment of continuous queries on
heterogeneous devices in an Internet of Mobile Things (IoMT) environment. It
also provides validation of those continuous queries testing if they will function
adequately (internally and in conjunction with the other queries) before their
deployment. We evaluated this platform using a real-word inspired use case
scenario and found out that it achieves the objectives of this work.

8.1
Publications

Our work resulted in the following publication:
MAGALHÃES, F.; SILVA, F. ; ENDLER, M.. Support for Adaptive
and Distributed Deployment of CEP Continuous Queries for the
IoMT. In: ANAIS DO XXXVIII SIMPÓSIO BRASILEIRO DE REDES

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 8. Conclusions 57

DECOMPUTADORES E SISTEMAS DISTRIBUÍDOS, p. 99–112, Rio de
Janeiro, RJ, Brasil, 2020. SBC.

8.2
Contributions

The main contributions of this work are are as follows:

– We developed the ContextMatcher, a context-based message distribution
layer.

– We developed the Global CEP Manager, a platform for the creation of
distributed CEP applications that disperse the event processing in cloud
and (mobile or stationary) edge devices.

– We propose the deployment of continuous queries based on contextual
requirements allowing the dynamic allocation and deallocation of queries
to devices based on the device’s current context. This represents a
novel approach to query distribution strategies. To the best of our
knowledge, there is no other work that considers the devices’ context
when deciding where to allocate each query. Most previous works focus
on load balancing. Our implementation and sample use case indicate that
our approach is applicable in real-world scenarios.

– We designed a set of validation procedures that precede the query
deployment, testing aspects of the queries’ internal correctness and inter-
query consistency. This validation can help the detection of problems
before the execution of the query in a processing node.

8.3
Future Works

This master thesis presented beneficial results. However, there is always
space for future work. We believe some of the most productive further devel-
opments to this work would be the following:

– Support for other middleware: We developed both the Con-
textMatcher and the GCM based on using the ContextNet middleware
as our communication bus. However, we could adapt both for other mid-
dleware, for instance, MQTT.

– Time as a contextual attribute: Time is an instrumental and far-
reaching aspect of context. The target contexts (Subsection 5.1.1) of
ContextMatcher could include parameters of relative time (e.g., before,
after, during, or within a time frame around an event or happening) and
absolute time (e.g., dates, time of day, days of the week).

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Chapter 8. Conclusions 58

– Load balancing: A natural next step in the development of GCM would
be to include the load balancing of queries. Many papers on the subject
of distributed CEP focus on load balancing. In this work, we opted to
focus on other issues. However, we could either design and include a novel
load balancing model or incorporate a load balancing model proposed in
another work.

– Further tests:We could perform other tests to evaluate the efficiency of
our work in scenarios with thousands of Processing Agents and constant
connections, disconnections, and context changes.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Bibliography

[1] CUGOLA, G.; MARGARA, A.. Processing flows of information: From
data stream to complex event processing. ACM Comput. Surv.,
44(3):15:1–15:62, June 2012.

[2] CARNEY, D.; ÇETINTEMEL, U.; CHERNIACK, M.; CONVEY, C.; LEE, S.;
SEIDMAN, G.; STONEBRAKER, M.; TATBUL, N. ; ZDONIK, S.. Moni-
toring streams: A new class of data management applications.
In: PROCEEDINGS OF THE 28TH INTERNATIONAL CONFERENCE ON
VERY LARGE DATA BASES, VLDB ’02, p. 215–226, Hong Kong, China,
2002. VLDB Endowment.

[3] RIOS, L. E. T.. An energy-aware iot gateway, with continuous
processing of sensor data. Master’s thesis, PUC-Rio, Rio de Janeiro,
Brasil, 2016.

[4] BALAZINSKA, M.; BALAKRISHNAN, H.; MADDEN, S. ; STONEBRAKER,
M.. Fault-tolerance in the borealis distributed stream process-
ing system. In: PROCEEDINGS OF THE 2005 ACM SIGMOD INTERNA-
TIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD ’05, p.
13–24, New York, NY, USA, 2005. ACM.

[5] GOLDIN, D.; SRINIVASA, S. ; SRIKANTI, V.. Active databases as in-
formation systems. In: PROCEEDINGS. INTERNATIONAL DATABASE
ENGINEERING AND APPLICATIONS SYMPOSIUM, 2004. IDEAS ’04., p.
123–130, Coimbra, Portugal, 2004.

[6] GEISLER, S.. Data Stream Management Systems. In: Kolaitis, P. G.;
Lenzerini, M. ; Schweikardt, N., editors, DATA EXCHANGE, INTEGRATION,
AND STREAMS, volumen 5 deDagstuhl Follow-Ups, p. 275–304. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2013.

[7] DELL’AGLIO, D.; DELLA VALLE, E.; VAN HARMELEN, F. ; BERNSTEIN,
A.. Stream reasoning: A survey and outlook. Data Science, 1:59–83,
2017.

[8] LUCKHAM, D. C.. The power of events, volumen 204. Addison-Wesley
Reading, 2002.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Bibliography 60

[9] LUCKHAM, D. C.; FRASCA, B.. Complex event processing in dis-
tributed systems. Technical report, Stanford University, 1998.

[10] ETZION, O.; NIBLETT, P. ; LUCKHAM, D. C.. Event processing in
action. Manning Greenwich, 2011.

[11] ENDLER, M.; E SILVA, F. S.. Past, present and future of the
contextnet iomt middleware. Open Journal of Internet Of Things
(OJIOT), 4(1):7–23, 2018.

[12] LUCKHAM, D. C.. Event Processing for Business. John Wiley Sons,
Ltd, 2012.

[13] PIETZUCH, P. R.; SHAND, B. ; BACON, J.. A framework for event
composition in distributed systems. In: PROCEEDINGS OF THE
ACM/IFIP/USENIX 2003 INTERNATIONAL CONFERENCE ON MIDDLE-
WARE, Middleware ’03, p. 62–82, New York, NY, USA, 2003. Springer-Verlag
New York, Inc.

[14] JAYASEKARA, S.; KANNANGARA, S.; DAHANAYAKAGE, T.;
RANAWAKA, I.; PERERA, S. ; NANAYAKKARA, V.. Wihidum:
Distributed complex event processing. Journal of Parallel and
Distributed Computing, 79-80:42 – 51, 2015. Special Issue on Scalable
Systems for Big Data Management and Analytics.

[15] RIOS, L. T.; ENDLER, M. ; COLCHER, S.. An energy-aware iot
gateway, with continuous processing of sensor data. In: SBRC2016,
XXXIV Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos
- SBRC2016, Salvador, Brasil, May 2016.

[16] STARKS, F.; PLAGEMANN, T. P.. Operator placement for efficient
distributed complex event processing in manets. In: 2015 IEEE
11TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE
COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB), p.
83–90, Oct 2015.

[17] DHILLON, A.; MAJUMDAR, S.; ST-HILAIRE, M. ; EL-HARAKI, A.. Mcep:
A mobile device based complex event processing system for re-
mote healthcare. In: 2018 IEEE INTERNATIONAL CONFERENCE ON
INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND
COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND
SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMART-
DATA), p. 203–210, Halifax, Canada, 2018.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA



Bibliography 61

[18] SHIN, Y.; YOON, S.; TRIRAT, P. ; LEE, J.. Cep-wizard: Automatic
deployment of distributed complex event processing. In: 2019
IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING
(ICDE), p. 2004–2007, Macao, China, 2019.

[19] HASENBURG, J.; BERMBACH, D.. Towards geo-context aware iot
data distribution. In: Yangui, S.; Bouguettaya, A.; Xue, X.; Faci, N.;
Gaaloul, W.; Yu, Q.; Zhou, Z.; Hernandez, N. ; Nakagawa, E. Y., editors,
SERVICE-ORIENTED COMPUTING – ICSOC 2019 WORKSHOPS, p. 111–
121, Cham, 2020. Springer International Publishing.

DBD
PUC-Rio - Certificação Digital Nº 1820993/CA


	Distributed CEP for Context-Aware Adaptive Acquirement and Processing of Information
	Resumo
	Table of contents
	Introduction
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Items out of Scope
	Allocation and Assignment Operations
	Outline

	Background
	CEP and Event Processing Networks
	ContextNet and M-Hub

	Related Work
	Query distribution strategy
	Multi-tiered distributed CEP
	Context-aware message distribution
	This Work

	Proposed Approach
	General Architecture
	Query Deployment Sequence
	Context-based Message Distribution Layer
	The core component
	The Processing Component

	Implementation
	ContextMatcher
	Target Contexts
	ContextMatcher Client Nodes
	ContextMacher Messages
	Multicast and Unicast
	Retained Messages (OnMatch / OnUnmatch)
	Message Priority

	ContextMatcher Server Module
	Justificaton for Stored Procedures

	Global CEP Manager
	GCM Core
	Processing Agent (PA)
	Offline PA Behavior


	Validation of Continuous Queries
	Basic Concepts and Notations
	The invariants about system consistency
	When a new query is submitted
	When a new version of a query is submitted
	When a query is directly assigned to a Processing Agent
	When a query is assigned to a context
	When a GCM Processing Agent reconnects to the GCM Core


	Evaluation
	Case Study
	Real Test Setup
	Global CEP Manager Performance Tests
	ContextMatcher Performance Tests
	Matching Tests
	Reallocaction Tests


	Conclusions
	Publications
	Contributions
	Future Works

	Bibliography



